Patterned Hybrid Wettability Surfaces for Fog Harvesting

Langmuir. 2023 Apr 4;39(13):4642-4650. doi: 10.1021/acs.langmuir.2c03432. Epub 2023 Mar 23.

Abstract

The scarcity of fresh water resources has become increasingly serious in recent years, posing threats to the survival of mankind. The ability of the animals and plants in arid areas to collect water from moisture and fog has drawn attention worldwide. Inspired by the synergistic fog harvesting mode of natural organisms with superhydrophilic and superhydrophobic patterning, a composite membrane with a concave-convex morphology and hybrid wettability was prepared aiming at efficient fog harvesting. The hybrid wettability surface was obtained by chemically modifying the superhydrophilic PAN substrate with 1H,1H,2H,2H-perfluorooctyltrichlorosilane using iron mesh as the mask. The porous PAN substrate was prepared by the non-solvent-induced phase separation (NIPS) method. Fog harvesting is a three-step process: condensation, coalescence, and rapid transportation of water droplets. The area and ratio of the hydrophilic/hydrophobic regions were tuned by adjusting the mesh number of the iron meshes. Under the optimal condition, the fog harvesting efficiencies of 40.3 and 74.2 mg·cm-2·min-1 were obtained when the fog yields were 0.05 and 0.1 L·min-1, respectively. The present work provides an alternative strategy for addressing the shortage of fresh water resources.