Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts

J Chem Phys. 2023 Mar 21;158(11):114201. doi: 10.1063/5.0139103.

Abstract

Solid, powdered samples are often prepared for infrared (IR) spectroscopy analysis in the form of compressed pellets. The intense scattering of incident light by such samples inhibits applications of more advanced IR spectroscopic techniques, such as two-dimensional (2D)-IR spectroscopy. We describe here an experimental approach that enables the measurement of high-quality 2D-IR spectra from scattering pellets of zeolites, titania, and fumed silica in the OD-stretching region of the spectrum under flowing gas and variable temperature up to ∼500 C. In addition to known scatter suppression techniques, such as phase cycling and polarization control, we demonstrate how a bright probe laser beam comparable in strength with the pump beam provides effective scatter suppression. The possible nonlinear signals arising from this approach are discussed and shown to be limited in consequence. In the intense focus of 2D-IR laser beams, a free-standing solid pellet may become elevated in temperature compared with its surroundings. The effects of steady state and transient laser heating effects on practical applications are discussed.