AGPs as molecular determinants of reproductive development

Ann Bot. 2023 May 15;131(5):827-838. doi: 10.1093/aob/mcad046.

Abstract

Background and aims: Morphogenesis occurs through accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-finger NO TRANSMITTING TRACT (NTT) or the MADS-box protein SEEDSTICK (STK), which are important in setting plant reproductive competence, feasibly by affecting cell wall polysaccharide and lipid distribution. Arabinogalactan proteins (AGPs) are major components of the cell wall and are thought to be involved in the reproductive process as important players in specific stages of development. The detection of AGPs epitopes in reproductive tissues of NTT and other fruit development-related TFs, such as MADS-box proteins including SHATTERPROOF1 (SHP1), SHP2 and STK, was the focus of this study.

Methods: We used fluorescence microscopy to perform immunolocalization analyses on stk and ntt single mutants, on the ntt stk double mutant and on the stk shp1 shp2 triple mutant using specific anti-AGP monoclonal antibodies. In these mutants, the expression levels of selected AGP genes were also measured by quantitative real-time PCR and compared with the respective expression in wild-type (WT) plants.

Key results: The present immunolocalization study collects information on the distribution patterns of specific AGPs in Arabidopsis female reproductive tissues, complemented by the quantification of AGP expression levels, comparing WT, stk and ntt single mutants, the ntt stk double mutant and the stk shp1 shp2 triple mutant.

Conclusions: These findings reveal distinct AGP distribution patterns in different developmental mutants related to the female reproductive unit in Arabidopsis. The value of the immunofluorescence labelling technique is highlighted in this study as an invaluable tool to dissect the remodelling nature of the cell wall in developmental processes.

Keywords: NO TRANSMITTING TRACT; SEEDSTICK; SHATTERPROOF; Sexual plant reproduction; arabinogalactan proteins; immunolocalization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis*
  • MADS Domain Proteins / genetics
  • Mucoproteins / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Transcription Factors / genetics

Substances

  • arabinogalactan proteins
  • Arabidopsis Proteins
  • Plant Proteins
  • Transcription Factors
  • Mucoproteins
  • SEEDSTICK protein, Arabidopsis
  • MADS Domain Proteins