Ray tracing optimization: a new method for intraocular lens power calculation in regular and irregular corneas

Sci Rep. 2023 Mar 20;13(1):4555. doi: 10.1038/s41598-023-31525-8.

Abstract

To develop a novel algorithm based on ray tracing, simulated visual performance and through-focus optimization for an accurate intraocular lens (IOL) power calculation. Custom-developed algorithms for ray tracing optimization (RTO) were used to combine the natural corneal higher-order aberrations (HOAs) with multiple sphero-cylindrical corrections in 210 higher order statistical eye models for developing keratoconus. The magnitude of defocus and astigmatism producing the maximum Visual Strehl was considered as the optimal sphero-cylindrical target for IOL power calculation. Corneal astigmatism and the RMS HOAs ranged from - 0.64 ± 0.35D and 0.10 ± 0.04 μm (0-months) to - 3.15 ± 1.38D and 0.82 ± 0.47 μm (120-months). Defocus and astigmatism target was close to neutral for eyes with low amount of HOAs (0 and 12-months), where 91.66% of eyes agreed within ± 0.50D in IOL power calculation (RTO vs. SRK/T). However, corneas with higher amounts of HOAs presented greater visual improvement with an optimized target. In these eyes (24- to 120-months), only 18.05% of eyes agreed within ± 0.50D (RTO vs. SRK/T). The power difference exceeded 3D in 42.2% while the cylinder required adjustments larger than 3D in 18.4% of the cases. Certain amounts of lower and HOAs may interact favourably to improve visual performance, shifting therefore the refractive target for IOL power calculation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astigmatism*
  • Cornea
  • Humans
  • Keratoconus*
  • Lenses, Intraocular*
  • Optics and Photonics
  • Phacoemulsification*
  • Refraction, Ocular
  • Visual Acuity