Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis

Methods. 2023 May:213:1-9. doi: 10.1016/j.ymeth.2023.02.011. Epub 2023 Mar 16.

Abstract

Cancer prognosis prediction and analysis can help patients understand expected life and help clinicians provide correct therapeutic guidance. Thanks to the development of sequencing technology, multi-omics data, and biological networks have been used for cancer prognosis prediction. Besides, graph neural networks can simultaneously consider multi-omics features and molecular interactions in biological networks, becoming mainstream in cancer prognosis prediction and analysis. However, the limited number of neighboring genes in biological networks restricts the accuracy of graph neural networks. To solve this problem, a local augmented graph convolutional network named LAGProg is proposed in this paper for cancer prognosis prediction and analysis. The process follows: first, given a patient's multi-omics data features and biological network, the corresponding augmented conditional variational autoencoder generates features. Then, the generated augmented features and the original features are fed into a cancer prognosis prediction model to complete the cancer prognosis prediction task. The conditional variational autoencoder consists of two parts: encoder-decoder. In the encoding phase, an encoder learns the conditional distribution of the multi-omics data. As a generative model, a decoder takes the conditional distribution and the original feature as inputs to generate the enhanced features. The cancer prognosis prediction model consists of a two-layer graph convolutional neural network and a Cox proportional risk network. The Cox proportional risk network consists of fully connected layers. Extensive experiments on 15 real-world datasets from TCGA demonstrated the effectiveness and efficiency of the proposed method in predicting cancer prognosis. LAGProg improved the C-index values by an average of 8.5% over the state-of-the-art graph neural network method. Moreover, we confirmed that the local augmentation technique could enhance the model's ability to represent multi-omics features, improve the model's robustness to missing multi-omics features, and prevent the model's over-smoothing during training. Finally, based on genes identified through differential expression analysis, we discovered 13 prognostic markers highly associated with breast cancer, among which ten genes have been proved by literature review.

Keywords: Biomarker discovery; Cancer prognosis; Graph neural network; Local augmentation; Multi-omics data; Survival risk prediction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms*
  • Female
  • Humans
  • Multiomics*
  • Neural Networks, Computer
  • Prognosis