Trehalose transport occurs via TreB in Listeria monocytogenes and it influences biofilm development and acid resistance

Int J Food Microbiol. 2023 Jun 2:394:110165. doi: 10.1016/j.ijfoodmicro.2023.110165. Epub 2023 Mar 11.

Abstract

Listeria monocytogenes is a pathogenic bacterium that can inhabit a diverse range of environmental niches. This is largely attributed to the high proportion of carbohydrate-specific phosphotransferase system (PTS) genes in its genome. Carbohydrates can be assimilated as sources of energy but additionally they can serve as niche-specific cues for L. monocytogenes to shape its global gene expression, in order to cope with anticipated stresses. To examine carbon source utilization among wild L. monocytogenes isolates and to understand underlying molecular mechanisms, a diverse collection of L. monocytogenes strains (n = 168) with whole genome sequence (WGS) data available was screened for the ability to grow in chemically defined media with different carbon sources. The majority of the strains grew in glucose, mannose, fructose, cellobiose, glycerol, trehalose, and sucrose. Maltose, lactose, and rhamnose supported slower growth while ribose did not support any growth. In contrast to other strains, strain1386, which belonged to clonal complex 5 (CC5), was unable to grow on trehalose as a sole carbon source. WGS data revealed that it carried a substitution (N352K) in a putative PTS EIIBC trehalose transporter, TreB, while this asparagine residue is conserved in other strains in this collection. Spontaneous mutants of strain 1386 that could grow in trehalose were found to harbour a reversion of the substitution in TreB. These results provide genetic evidence that TreB is responsible for trehalose uptake and that the N352 residue is essential for TreB activity. Moreover, reversion mutants also restored other unusual phenotypes that strain 1386 displayed, i.e. altered colony morphology, impaired biofilm development, and reduced acid resistance. Transcriptional analysis at stationary phase with buffered BHI media revealed that trehalose metabolism positively influences the transcription of genes encoding amino acid-based acid resistance mechanisms. In summary, our results demonstrated that N352 is key to the function of the sole trehalose transporter TreB in L. monocytogenes and suggest that trehalose metabolism alters physiology to favour biofilm development and acid stress resistance. Moreover, since strain 1386 is among the strains recommended by the European Union Reference Laboratory for conducting food challenge studies in order to determine whether or not L. monocytogenes can grow in food, these findings have important implications for food safety.

Keywords: Acid resistance; Biofilm; Carbon source; Listeria monocytogenes; Trehalose; treB.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Biofilms
  • Carbohydrates
  • Listeria monocytogenes*
  • Membrane Transport Proteins
  • Trehalose / metabolism

Substances

  • Trehalose
  • Bacterial Proteins
  • Carbohydrates
  • Membrane Transport Proteins