Context-dependent insect predation pressure on an avian ectoparasite

Insect Sci. 2023 Dec;30(6):1784-1797. doi: 10.1111/1744-7917.13197. Epub 2023 Apr 25.

Abstract

Context dependence arises when ecological relationships vary with the conditions under which they are observed. Context dependence of interactions involving parasites is poorly known, even if it is key to understanding host-parasite relationships and food web dynamics. This paper investigates to which extent predation pressure on an avian ectoparasite (Carnus hemapterus) is context-dependent. Based on a predator-exclusion experiment, predation pressure on C. hemapterus pupae in the host's nest for 3 years, and its variation between habitat types are quantified. Variation in precipitation and normalized difference vegetation index (NDVI) is also explored as a likely cause of context dependency. We hypothesize that predation pressure should fluctuate with such surrogates of food availability, so that inter-annual and intra-annual differences may emerge. The number of nests with significant reduction of pupae varied widely among years ranging from 24% to 75%. However, average pupae reduction in nests where a significant reduction occurred did not vary between years. No differences in predation rates between habitat types were detected. Precipitation and NDVI varied widely between years and NDVI was consistently lower around nests on cliffs than around nests on trees and farmhouses. Parallels were found between variation in predation pressure and precipitation/NDVI at a wide scale (highest predation the driest year, and much lower the 2 rainier ones), but not at the nest scale. This paper shows clear context-dependent insect predation pressure on an ectoparasite under natural conditions, and that such interaction changes in signs rather than magnitude between years. The causes for these variations require longer-term studies and/or well-designed, large-scale experiments.

Keywords: Carnus hemapterus; ants; arid areas; consumer-resource interaction; ecosystem productivity; predator-parasite; rainfall.

MeSH terms

  • Animals
  • Birds*
  • Ecosystem
  • Food Chain
  • Insecta
  • Predatory Behavior*
  • Pupa