Influence of joint volume on range of motion after arthroscopic rotator cuff repair

BMC Musculoskelet Disord. 2023 Mar 17;24(1):201. doi: 10.1186/s12891-023-06306-z.

Abstract

Background: Capsular contracture is a well-known etiology in the primary stiff shoulder; thus capsular contracture and resultant decreased joint volume could lead to postoperative stiffness, which is a commonly reported morbidity after arthroscopic rotator cuff repair (ARCR). The purpose of this study was (1) to quantify the joint volume (total joint volume and each quadrant compartmental volume) using computed tomography arthrography (CTA) and (2) to demonstrate the relationship between joint volume and postoperative range of motion (ROM) after ARCR.

Materials and methods: Eighty-three patients (60 ± 5.11 years, men = 26, women = 57) who had undergone ARCR between January 2015 to December 2020 due to small to medium full-thickness tear and followed by CTA 6 months postoperatively were retrospectively reviewed. An image reconstruction program (3D Slicer, version 4.11.2 software) was used to calculate the joint volume (total joint volume and quadrant compartment joint volumes; anteroinferior, anterosuperior, posterosuperior and posteroinferior). For shoulder ROM, data including scaption (Sc), external rotation on side (ERs), external rotation at 90° (ER90), and internal rotation on back (IRb) were collected 6 months postoperatively. An evaluation of the correlation between joint volume and each shoulder motion was performed.

Results: There were moderate correlations between the total joint volume and each motion (Sc: Pearson coefficient, 0.32, p = 0.0047; ERs: Pearson coefficient, 0.24, p = 0.0296; ER90: Pearson coefficient, 0.33, p = 0.0023; IRb: Pearson coefficient, 0.23, p = 0.0336). Among the quadrant compartments, the anteroinferior (Sc: Pearson coefficient, 0.26, p = 0.0199; ERs: Pearson coefficient, 0.23, p = 0.0336; ER90: Pearson coefficient, 0.25, p = 0.0246; IRb: Pearson coefficient, 0.26, p = 0.0168) and posterosuperior (Sc: Pearson coefficient, 0.24, p = 0.029; ER90: Pearson coefficient, 0.29, p = 0.008; IRb: Pearson coefficient, 0.22, p = 0.0491) and posteroinferior (Sc: Pearson coefficient, 0.30, p = 0.0064; ER90: Pearson coefficient, 0.29, p = 0.0072) showed moderate correlations with each shoulder motion.

Conclusion: Total joint volume, anteroinferior compartment joint volume, posterosuperior compartment joint volume and posteroinferior compartment joint volume were related to postoperative ROM after ARCR. Perioperative methods to increase the joint volume, especially the anteroinferior, posterosuperior and posteroinferior parts of the capsule may prevent postoperative stiffness after ARCR.

Level of evidence: Level III; Retrospective Case-Control Study.

Keywords: Arthrography; Arthroscopy; Multidetector Computed Tomography; Rotator Cuff Injuries; Shoulder; Shoulder Joint.

MeSH terms

  • Arthroscopy / adverse effects
  • Arthroscopy / methods
  • Case-Control Studies
  • Contracture*
  • Female
  • Humans
  • Male
  • Range of Motion, Articular
  • Retrospective Studies
  • Rotator Cuff / diagnostic imaging
  • Rotator Cuff / surgery
  • Rotator Cuff Injuries* / diagnostic imaging
  • Rotator Cuff Injuries* / surgery
  • Shoulder Joint* / diagnostic imaging
  • Shoulder Joint* / surgery
  • Treatment Outcome