Measuring configural spatial knowledge: Individual differences in correlations between pointing and shortcutting

Psychon Bull Rev. 2023 Oct;30(5):1802-1813. doi: 10.3758/s13423-023-02266-6. Epub 2023 Mar 17.

Abstract

People use environmental knowledge to maintain a sense of direction in daily life. This knowledge is typically measured by having people point to unseen locations (judgments of relative direction) or navigate efficiently in the environment (shortcutting). Some people can estimate directions precisely, while others point randomly. Similarly, some people take shortcuts not experienced during learning, while others mainly follow learned paths. Notably, few studies have directly tested the correlation between pointing and shortcutting performance. We compared pointing and shortcutting in two experiments, one using desktop virtual reality (VR) (N = 57) and one using immersive VR (N = 48). Participants learned a new environment by following a fixed route and were then asked to point to unseen locations and navigate to targets by the shortest path. Participants' performance was clustered into two groups using K-means clustering. One (lower ability) group pointed randomly and showed low internal consistency across trials in pointing, but were able to find efficient routes, and their pointing and efficiency scores were not correlated. The others (higher ability) pointed precisely, navigated by efficient routes, and their pointing and efficiency scores were correlated. These results suggest that with the same egocentric learning experience, the correlation between pointing and shortcutting depends on participants' learning ability, and internal consistency and discriminating power of the measures. Inconsistency and limited discriminating power can lead to low correlations and mask factors driving human variation. Psychometric properties, largely under-reported in spatial cognition, can advance our understanding of individual differences and cognitive processes for complex spatial tasks.

Keywords: Direction estimation; Individual differences; Psychometrics; Wayfinding.

MeSH terms

  • Aptitude
  • Cognition
  • Humans
  • Individuality
  • Learning
  • Spatial Navigation*
  • Virtual Reality*