Conditioned media of deer antler stem cells accelerate regeneration of alveolar bone defects in rats

Cell Prolif. 2023 May;56(5):e13454. doi: 10.1111/cpr.13454. Epub 2023 Mar 16.

Abstract

The destruction of periodontal alveolar bone (AB) caused by periodontitis is regarded as one of the major reasons for tooth loss. The inhibition of bone resorption and regeneration of lost AB are the desirable outcomes in clinical practice but remain in challenge. The use of mesenchymal stem cells (MSCs) is one current approach for achieving true restoration of AB defects (ABD). Antler stem cells (AnSC) are capable of renewing a huge mammalian bony appendage, the deer antler, suggesting an unparalleled potential for bone regeneration. Herein, we investigated the effectiveness of deer AnSCs conditioned medium (CM, AnSC-CM) for repair of surgically-created ABD using a rat model and sought to define the underlying mechanisms. The results showed that AnSC-CM effectively induced regeneration of AB tissue; the outcome was significantly better than human bone marrow mesenchymal stem cell conditioned medium (hBMSC-CM). AnSC-CM treatment upregulated osteogenic factors and downregulated osteoclastic differentiation factors; stimulated proliferation, migration and differentiation of resident MSCs toward osteogenic lineage cells; modulated macrophage polarization toward the M2 phenotype and suppressed osteoclastogenesis. That AnSC-CM resulted in better outcomes than hBMSC-CM in treating ABD was attributed to the cell compatibility as both AnSCs and AB tissue are neural crest-derived. In conclusion, the effects of AnSC-CM on AB tissue regeneration were achieved through both promotion of osteogenesis and inhibition of osteoclastogenesis. We believe that AnSC-CM is a candidate for effective treatment of ABD in dental clinical practice but will require investment in further development.

MeSH terms

  • Animals
  • Antlers*
  • Bone Regeneration
  • Cell Differentiation
  • Culture Media, Conditioned / pharmacology
  • Deer*
  • Humans
  • Mesenchymal Stem Cells*
  • Osteogenesis
  • Rats
  • Stem Cells

Substances

  • Culture Media, Conditioned