Mesoporous TiO2 Coatings Regulate ZnO Nanoparticle Loading and Zn2+ Release on Titanium Dental Implants for Sustained Osteogenic and Antibacterial Activity

ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15235-15249. doi: 10.1021/acsami.3c00812. Epub 2023 Mar 17.

Abstract

Two major issues are currently hindering the clinical practice of titanium dental implants for the lack of biological activities: immediate/early loading risks and peri-implantitis. To solve these issues, it is urgent to develop multifunctional implants modified with effective osteogenic and antibacterial properties. Zinc oxide nanoparticles (ZnO NPs) possess superior antibacterial activity; however, they can rapidly release Zn2+, causing cytotoxicity. In this study, a potential dental implant modification was creatively developed as ZnO nanoparticle-loaded mesoporous TiO2 coatings (nZnO/MTC-Ti) via the evaporation-induced self-assembly method (EISA) and one-step spin coating. The mesoporous TiO2 coatings (MTCs) regulated the synthesis and loading of ZnO NPs inside the nanosized pores. The synergistic effects of MTC and ZnO NPs on nZnO/MTC-Ti not only controlled the long-term steady-state release of Zn2+ but also optimized the charge distribution on the surface. Therefore, the cytotoxicity of ZnO NPs was resolved without triggering excessive reactive oxygen species (ROS). The increased extracellular Zn2+ further promoted a favorable intracellular zinc ion microenvironment through the modulation of zinc transporters (ZIP1 and ZnT1). Owing to that, the adhesion, proliferation, and osteogenic activity of bone mesenchymal stem cells (BMSCs) were improved. Additionally, nZnO/MTC-Ti inhibited the proliferation of oral pathogens (Pg and Aa) by inducing bacterial ROS production. For in vivo experiments, different implants were implanted into the alveolar fossa of Sprague-Dawley rats immediately after tooth extraction. The nZnO/MTC-Ti implants were found to possess a higher capability for enhancing bone regeneration, antibiosis, and osseointegration in vivo. These findings suggested the outstanding performance of nZnO/MTC-Ti implants in accelerating osseointegration and inhibiting bacterial infection, indicating a huge potential for solving immediate/early loading risks and peri-implantitis of dental implants.

Keywords: antibacterial activity; dental implants; mesoporous coatings; osteogenic activity; zinc oxide.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Coated Materials, Biocompatible / pharmacology
  • Dental Implants*
  • Osteogenesis
  • Peri-Implantitis*
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species / pharmacology
  • Surface Properties
  • Titanium / pharmacology
  • Zinc / pharmacology
  • Zinc Oxide* / pharmacology

Substances

  • Zinc Oxide
  • titanium dioxide
  • Titanium
  • Dental Implants
  • Reactive Oxygen Species
  • Zinc
  • Anti-Bacterial Agents
  • Coated Materials, Biocompatible