Global patterns of water storage in the rooting zones of vegetation

Nat Geosci. 2023;16(3):250-256. doi: 10.1038/s41561-023-01125-2. Epub 2023 Feb 9.

Abstract

The rooting-zone water-storage capacity-the amount of water accessible to plants-controls the sensitivity of land-atmosphere exchange of water and carbon during dry periods. How the rooting-zone water-storage capacity varies spatially is largely unknown and not directly observable. Here we estimate rooting-zone water-storage capacity globally from the relationship between remotely sensed vegetation activity, measured by combining evapotranspiration, sun-induced fluorescence and radiation estimates, and the cumulative water deficit calculated from daily time series of precipitation and evapotranspiration. Our findings indicate plant-available water stores that exceed the storage capacity of 2-m-deep soils across 37% of Earth's vegetated surface. We find that biome-level variations of rooting-zone water-storage capacities correlate with observed rooting-zone depth distributions and reflect the influence of hydroclimate, as measured by the magnitude of annual cumulative water-deficit extremes. Smaller-scale variations are linked to topography and land use. Our findings document large spatial variations in the effective root-zone water-storage capacity and illustrate a tight link among the climatology of water deficits, rooting depth of vegetation and its sensitivity to water stress.

Keywords: Climate-change ecology; Ecosystem ecology; Hydrology.