Serotonin-induced stereospecific formation and bioactivity of the eicosanoid 17,18-epoxyeicosatetraenoic acid in the regulation of pharyngeal pumping of C. elegans

Biochim Biophys Acta Mol Cell Biol Lipids. 2023 May;1868(5):159304. doi: 10.1016/j.bbalip.2023.159304. Epub 2023 Mar 11.

Abstract

17,18-Epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant eicosanoid generated by cytochrome P450 (CYP) enzymes in C. elegans, is a potential signaling molecule in the regulation of pharyngeal pumping activity of this nematode. As a chiral molecule, 17,18-EEQ can exist in two stereoisomers, the 17(R),18(S)- and 17(S),18(R)-EEQ enantiomers. Here we tested the hypothesis that 17,18-EEQ may function as a second messenger of the feeding-promoting neurotransmitter serotonin and stimulates pharyngeal pumping and food uptake in a stereospecific manner. Serotonin treatment of wildtype worms induced a more than twofold increase of free 17,18-EEQ levels. As revealed by chiral lipidomics analysis, this increase was almost exclusively due to an enhanced release of the (R,S)-enantiomer of 17,18-EEQ. In contrast to the wildtype strain, serotonin failed to induce 17,18-EEQ formation as well as to accelerate pharyngeal pumping in mutant strains defective in the serotonin SER-7 receptor. However, the pharyngeal activity of the ser-7 mutant remained fully responsive to exogenous 17,18-EEQ administration. Short term incubations of well-fed and starved wildtype nematodes showed that both racemic 17,18-EEQ and 17(R),18(S)-EEQ were able to increase pharyngeal pumping frequency and the uptake of fluorescence-labeled microspheres, while 17(S),18(R)-EEQ and also 17,18-dihydroxyeicosatetraenoic acid (17,18-DHEQ, the hydrolysis product of 17,18-EEQ) were ineffective. Taken together, these results show that serotonin induces 17,18-EEQ formation in C. elegans via the SER-7 receptor and that both the formation of this epoxyeicosanoid and its subsequent stimulatory effect on pharyngeal activity proceed with high stereospecificity confined to the (R,S)-enantiomer.

Keywords: 17,18-EEQ; Caenorhabditis elegans; Chiral phase; Eicosanoids; Pharynx; Stereoisomers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans* / physiology
  • Cytochrome P-450 Enzyme System
  • Eicosanoids
  • Serotonin / pharmacology

Substances

  • 17,18-epoxy-5,8,11,14-eicosatetraenoic acid
  • Serotonin
  • Caenorhabditis elegans Proteins
  • Eicosanoids
  • Cytochrome P-450 Enzyme System