Synergy between highly dispersed Ni nanocrystals and graphitized carbon derived from a single source as a strategy for high performance Lithium-Sulfur batteries

J Colloid Interface Sci. 2023 Jun 15:640:990-1004. doi: 10.1016/j.jcis.2023.03.035. Epub 2023 Mar 7.

Abstract

Due to their higher energy density, lower prices, and more environmentally friendly active components, Li-S batteries will soon compete with the current Li-ion batteries. However, issues persist that hinder this implementation, such as the poor conductivity of S and sluggish kinetics due to the polysulfide shuttle, among others. Herein, Ni nanocrystals encapsulated in a C matrix are obtained by a novel strategy based on the thermal decomposition of a Ni oleate-oleic acid complex at low-to-moderate temperatures: 500 and 700 °C. The two C/Ni composites were employed as hosts in Li-S batteries. Although the C matrix is amorphous at 500 °C, it is highly graphitized at 700 °C. At this moderate temperature, the simultaneous generation of Ni nanocrystals and the carbon matrix enhances the catalytic activity of Ni toward the graphitization process, which is negligible if starting from a mixture of a Ni salt and carbon source, even when calcined at temperatures as high as 1000 °C. The electrode made from the C/Ni composite obtained at 700 °C exhibits a high reversible capacity and an enhanced rate capability, much better not only than the C/Ni composite obtained at 500 °C but than others based on amorphous C calcined at very high temperatures, around 1000 °C. These properties are attributed to an increase in the electrical conductivity parallel to the ordering of the layers. We believe this work provides a new strategy to design C-based composites capable of combining the formation of nanocrystalline phases and the control of the C structure with superior electrochemical properties for Li-S batteries.

Keywords: Carbon nanosheets; Cathode composite; Lithium-sulfur batteries; Nickel nanoparticles.