Size- and Stereochemistry-Dependent Transcriptional Bypass of DNA Alkyl Phosphotriester Adducts in Mammalian Cells

DNA (Basel). 2022 Dec;2(4):221-230. doi: 10.3390/dna2040016. Epub 2022 Oct 5.

Abstract

Environmental, endogenous and therapeutic alkylating agents can react with internucleotide phosphate groups in DNA to yield alkyl phosphotriester (PTE) adducts. Alkyl-PTEs are induced at relatively high frequencies and are persistent in mammalian tissues; however, their biological consequences in mammalian cells have not been examined. Herein, we assessed how alkyl-PTEs with different alkyl group sizes and stereochemical configurations (S P and R P diastereomers of Me and nPr) affect the efficiency and fidelity of transcription in mammalian cells. We found that, while the R P diastereomer of Me- and nPr-PTEs constituted moderate and strong blockages to transcription, respectively, the S P diastereomer of the two lesions did not appreciably perturb transcription efficiency. In addition, none of the four alkyl-PTEs induced mutant transcripts. Furthermore, polymerase η assumed an important role in promoting transcription across the S P-Me-PTE, but not any of other three lesions. Loss of other translesion synthesis (TLS) polymerases tested, including Pol κ, Pol ι, Pol ξ and REV1, did not alter the transcription bypass efficiency or mutation frequency for any of the alkyl-PTE lesions. Together, our study provided important new knowledge about the impact of alkyl-PTE lesions on transcription and expanded the substrate pool of Pol η in transcriptional bypass.

Keywords: DNA alkylation; DNA damage; transcriptional mutagenesis.