The effects of NutraGen supplement on cattle growth performance, energetic efficiency, carcass characteristics, and characteristics of digestion in calf-fed Holstein steers

Front Vet Sci. 2023 Feb 24:10:1039323. doi: 10.3389/fvets.2023.1039323. eCollection 2023.

Abstract

Evaluation of the effects of feeding NutraGen supplement (NutraGen, NTG; Phibro Animal Health, Teaneck, NJ, USA) on growth performance, energetic efficiency, carcass characteristcs, and characteristics of digestion in calf-fed Holstein steers fed a conventional growing-finishing diet. Trial 1 evaluated growth performance, dietary energetics and carcass characteristics. Two hundred Holstein steer calves (134 ± 5 kg) were blocked by initial body weight (BW) and randomly assigned to 40 pens (5 steers/pen). Dietary treatments consisted of a steam-flaked corn-based growing-finishing diet supplemented with 0, 0.2, 0.4, or 0.6% NTG (DM basis). In trial 2, four Holstein steers (170 ±6 kg) with cannulas in the rumen and proximal duodenum were used in a 4 × 4 Latin square experiment to evaluate digestibility and ruminal characteristics using the treatments from trial 1. Compared to non-supplemented cattle, NTG increased BW (2.0%, P = 0.02) and tended to increase ADG (3.6%, P = 0.07) during the initial 56 d period. However, there were no treatment effects on overall growth performance and efficiency of dietary energy utilization after the first 56 days (P > 0.10). Supplementation of NTG increased (linear effect; P ≤ 0.03) longissimus muscle area and kidney, pelvic, and heart fat. There was no effect (P ≥ 0.05) of NTG supplementation on other carcass characteristics, liver abscess incidence, or liver abscess scars. Supplementation decreased the molar proportion of ruminal propionate (P = 0.05) and tended to increase acetate:propionate molar ratio (P = 0.09). However, there was no effect of NTG supplementation on ruminal and total tract diet digestion. NTG increased performance of Holstein steers during the first 56 d on feed in the feedlot. In addition, the steers had an increase in KPH fat and LM area, indicating that the additive induced change in metabolism of the steers.

Keywords: Holstein; cattle; feedlot; heat-stress; performance.

Grants and funding

This project was supported through the University of California Agricultural Experiment Station with Hatch funding from the USDA National Institute of Food and Agriculture (CA-D-ASC-6578-H).