Privacy-Preserving Decision-Tree Evaluation with Low Complexity for Communication

Sensors (Basel). 2023 Feb 27;23(5):2624. doi: 10.3390/s23052624.

Abstract

Due to the rapid development of machine-learning technology, companies can build complex models to provide prediction or classification services for customers without resources. A large number of related solutions exist to protect the privacy of models and user data. However, these efforts require costly communication and are not resistant to quantum attacks. To solve this problem, we designed a new secure integer-comparison protocol based on fully homomorphic encryption and proposed a client-server classification protocol for decision-tree evaluation based on the secure integer-comparison protocol. Compared to existing work, our classification protocol has a relatively low communication cost and requires only one round of communication with the user to complete the classification task. Moreover, the protocol was built on a fully homomorphic-scheme-based lattice that is resistant to quantum attacks, as opposed to conventional schemes. Finally, we conducted an experimental analysis comparing our protocol with the traditional approach on three datasets. The experimental results showed that the communication cost of our scheme was 20% of the cost of the traditional scheme.

Keywords: decisional tree; fully homomorphic encryption; secure integer comparison.