Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation

Polymers (Basel). 2023 Feb 22;15(5):1104. doi: 10.3390/polym15051104.

Abstract

One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.

Keywords: Lactobacillus acidophilus; coffee melanoidins; eggshell membrane hydrolysates; probiotics; single-cell nanoencapsulation.