Preparation of Cu/Sn-Organic Nano-Composite Catalysts for Potential Use in Hydrogen Evolution Reaction and Electrochemical Characterization

Nanomaterials (Basel). 2023 Feb 28;13(5):911. doi: 10.3390/nano13050911.

Abstract

In this work, the solvothermal solidification method has been used to be prepared as a homogenous CuSn-organic nano-composite (CuSn-OC) to use as a catalyst for alkaline water electrolysis for cost-effective H2 generation. FT-IR, XRD, and SEM techniques were used to characterize the CuSn-OC which confirmed the formation of CuSn-OC with a terephthalic acid linker as well as Cu-OC and Sn-OC. The electrochemical investigation of CuSn-OC onto a glassy carbon electrode (GCE) was evaluated using the cyclic voltammetry (CV) method in 0.1 M KOH at room temperature. The thermal stability was examined using TGA methods, and the Cu-OC recorded a 91.4% weight loss after 800 °C whereas the Sn-OC and CuSn-OC recorded 16.5 and 62.4%, respectively. The results of the electroactive surface area (ECSA) were 0.5, 0.42, and 0.33 m2 g-1 for the CuSn-OC, Cu-OC, and Sn-OC, respectively, and the onset potentials for HER were -420, -900, and -430 mV vs. the RHE for the Cu-OC, Sn-OC, and CuSn-OC, respectively. LSV was used to evaluate the electrode kinetics, and the Tafel slope for the bimetallic catalyst CuSn-OC was 190 mV dec-1, which was less than for both the monometallic catalysts, Cu-OC and Sn-OC, while the overpotential was -0.7 vs. the RHE at a current density of -10 mA cm-2.

Keywords: Cu; Sn; electrocatalyst; homogenous organic composite; hydrogen evolution; metal-organic catalyst.

Grants and funding

This research was funded by King Abdulaziz City for Science and Technology, grant name “Innovation Challenge projects” (2022–2023).