The effect of piping stream channels on dissolved oxygen concentration and ecological health

Environ Monit Assess. 2023 Mar 10;195(4):460. doi: 10.1007/s10661-023-11070-7.

Abstract

Sunlight plays a key role in the nutrient cycle within streams. Streams are often piped to accommodate urban residential or commercial development for buildings, roads, and parking. This results in altered exposure to sunlight, air, and soil, subsequently affecting the growth of aquatic vegetation, reducing reaeration, and thus impairing the water quality and ecological health of streams. While the effects of urbanization on urban streams, including changing flow regimes, stream bank and bed erosion, and degraded water quality, are well understood, the effects of piping streams on dissolved oxygen (DO) concentrations, fish habitats, reaeration, photosynthesis, and respiration rates are not. We addressed this research gap by assessing the effects of stream piping on DO concentrations before and after a 565-m piped section of Stroubles Creek in Blacksburg, VA, for several days during the summer of 2021. Results indicate that the DO level decreased by approximately 18.5% during daylight hours as water flowed through the piped section of the creek. Given the optimum DO level (9.0 mg·L-1) for brook trout (Salvelinus sp.), which are native and present in a portion of Stroubles Creek, the resulting DO deficits were - 0.49 and - 1.24 mg·L-1, for the inlet and outlet, respectively, indicating a possible adverse impact from piping the stream on trout habitat. Photosynthesis and respiration rates were reduced through the piped section, primarily due to the reduced solar radiation and the resultant reduction in oxygen production from aquatic vegetation; however, the reaeration rate increased. This study can inform watershed restoration efforts, particularly decisions regarding stream daylighting with respect to potential water quality and aquatic habitat benefits.

Keywords: Delta method; Dissolved oxygen; Photosynthesis; Piped channels; Reaeration; Respiration.

MeSH terms

  • Animals
  • Ecosystem
  • Environmental Monitoring* / methods
  • Oxygen
  • Rivers*
  • Water Quality

Substances

  • Oxygen