Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery

Nat Commun. 2023 Mar 10;14(1):1325. doi: 10.1038/s41467-023-36971-6.

Abstract

Understanding the roles of intermediate states in signaling is pivotal to unraveling the activation processes of G protein-coupled receptors (GPCRs). However, the field is still struggling to define these conformational states with sufficient resolution to study their individual functions. Here, we demonstrate the feasibility of enriching the populations of discrete states via conformation-biased mutants. These mutants adopt distinct distributions among five states that lie along the activation pathway of adenosine A2A receptor (A2AR), a class A GPCR. Our study reveals a structurally conserved cation-π lock between transmembrane helix VI (TM6) and Helix8 that regulates cytoplasmic cavity opening as a "gatekeeper" for G protein penetration. A GPCR activation process based on the well-discerned conformational states is thus proposed, allosterically micro-modulated by the cation-π lock and a previously well-defined ionic interaction between TM3 and TM6. Intermediate-state-trapped mutants will also provide useful information in relation to receptor-G protein signal transduction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine
  • Models, Molecular
  • Protein Conformation
  • Receptor, Adenosine A2A / metabolism
  • Receptors, G-Protein-Coupled* / metabolism
  • Signal Transduction*

Substances

  • Receptors, G-Protein-Coupled
  • Adenosine
  • Receptor, Adenosine A2A