Atomic-scale interpretation of the quantum oscillations in cuprate superconductors

J Phys Condens Matter. 2023 Mar 22;35(21). doi: 10.1088/1361-648X/acc379.

Abstract

Cuprate superconductors display unusual features in bothkspace and real space as the superconductivity is suppressed-a broken Fermi surface, charge density wave, and pseudogap. Contrarily, recent transport measurements on cuprates under high magnetic fields report quantum oscillations (QOs), which imply rather a usual Fermi liquid behavior. To settle the disagreement, we investigated Bi2Sr2CaCu2O8+δunder a magnetic field in an atomic scale. A particle-hole (p-h) asymmetrically dispersing density of states (DOSs) modulation was found at the vortices on a slightly underdoped sample, while on a highly underdoped sample, no trace of the vortex was found even at 13 T. However, a similar p-h asymmetric DOS modulation persisted in almost an entire field of view. From this observation, we infer an alternative explanation of the QO results by providing a unifying picture where the aforementioned seemingly conflicting evidence from angle-resolved photoemission spectroscopy, spectroscopic imaging scanning tunneling microscopy, and magneto-transport measurements can be understood solely in terms of the DOS modulations.

Keywords: STM; cuprate; high magnetic field; high-Tc; magnetic vortices; quantum oscillation; superconductor.