Under-oil open microfluidic systems for rapid phenotypic antimicrobial susceptibility testing

Lab Chip. 2023 Apr 12;23(8):2005-2015. doi: 10.1039/d3lc00066d.

Abstract

Antimicrobial susceptibility testing (AST) remains the cornerstone of effective antimicrobial selection and optimization in patients. Despite recent advances in rapid pathogen identification and resistance marker detection with molecular diagnostics (e.g., qPCR, MALDI-TOF MS), phenotypic (i.e., microbial culture-based) AST methods - the gold standard in hospitals/clinics - remain relatively unchanged over the last few decades. Microfluidics-based phenotypic AST has been growing fast in recent years, aiming for rapid (i.e., turnaround time <8 h), high-throughput, and automated species identification, resistance detection, and antibiotics screening. In this pilot study, we describe the application of a multi-liquid-phase open microfluidic system, named under-oil open microfluidic systems (UOMS), to achieve a rapid phenotypic AST. UOMS provides an open microfluidics-based solution for rapid phenotypic AST (UOMS-AST) by implementing and recording a pathogen's antimicrobial activity in micro-volume testing units under an oil overlay. UOMS-AST allows free physical access (e.g., by standard pipetting) to the system and label-free, single-cell resolution optical access. UOMS-AST can accurately and rapidly determine antimicrobial activities [including susceptibility/resistance breakpoint and minimum inhibitory concentration (MIC)] from nominal sample/bacterial cells in a system aligned with clinical laboratory standards where open systems and optical microscopy are predominantly adopted. Further, we combine UOMS-AST with a cloud lab data analytic technique for real-time image analysis and report generation to provide a rapid (<4 h) sample-to-report turnaround time, shedding light on its utility as a versatile (e.g., low-resource setting and manual laboratory operation, or high-throughput automated system) phenotypic AST platform for hospital/clinic use.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents*
  • Humans
  • Microbial Sensitivity Tests
  • Microfluidics* / methods
  • Pilot Projects

Substances

  • Anti-Bacterial Agents
  • Anti-Infective Agents