Shaping the scaling characteristics of gap gene expression patterns in Drosophila

Heliyon. 2023 Feb 10;9(2):e13623. doi: 10.1016/j.heliyon.2023.e13623. eCollection 2023 Feb.

Abstract

How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.

Keywords: Bicoid; Drosophila; Gap genes; Morphogen gradient; Pattern formation.