Optical band gaps and spectroscopy properties of Bi m+/Eu n+/Yb3+ co-doped (m = 0, 2, 3; and n = 2, 3) zinc calcium silicate glasses

RSC Adv. 2023 Mar 1;13(10):6861-6871. doi: 10.1039/d2ra07310b. eCollection 2023 Feb 21.

Abstract

In this study, the indirect/direct optical band gaps and spectroscopy properties of Bi m+/Eu n+/Yb3+ co-doped (m = 0, 2, 3; and n = 2, 3) zinc calcium silicate glasses under different excitation wavelengths were investigated. Zinc calcium silicate glasses with the main compositions of SiO2-ZnO-CaF2-LaF3-TiO2 were prepared by the conventional melting method. EDS analysis was performed to determine the elemental composition existing in the zinc calcium silicate glasses. Visible (VIS)-, upconversion (UC)-, and near-infrared (NIR)-emission spectra of Bi m+/Eu n+/Yb3+ co-doped glasses were also investigated. Indirect optical band gaps and direct optical band gaps of Bi m+-, Eu n+- single-doped, and Bi m+-Eu n+ co-doped SiO2-ZnO-CaF2-LaF3-TiO2-Bi2O3-EuF3-YbF3 zinc calcium silicate glasses were calculated and analyzed. CIE 1931(x, y) color coordinates for VIS and UC emission spectra of Bi m+/Eu n+/Yb3+ co-doped glasses were determined. Besides, the mechanism of VIS-, UC-, NIR-emissions, and energy transfer (ET) processes between Bi m+ and Eu n+ ions were also proposed and discussed.