Radiation resistance of cancer cells caused by mitochondrial dysfunction depends on SIRT3-mediated mitophagy

FEBS J. 2023 Jul;290(14):3629-3645. doi: 10.1111/febs.16769. Epub 2023 Mar 20.

Abstract

Radiation resistance is the leading cause of radiotherapy failure in patients with cancer. Enhanced DNA damage repair is the main reason for cancer cells to develop resistance to radiation. Autophagy has been widely reported to be linked to increased genome stability and radiation resistance. Mitochondria are highly involved in the cell response to radiotherapy. However, the autophagy subtype mitophagy has not been studied in terms of genome stability. We have previously demonstrated that mitochondrial dysfunction is the cause of radiation resistance in tumour cells. In the present study, we found that SIRT3 was highly expressed in colorectal cancer cells with mitochondrial dysfunction, leading to PINK1/Parkin-mediated mitophagy. Excessive activation of mitophagy enhanced DNA damage repair, therefore promoting the resistance of tumour cells to radiation. Mechanistically, mitophagy resulted in decreased RING1b expression, which led to a reduction in the ubiquitination of histone H2A at K119, thereby enhancing the repair of DNA damage caused by radiation. Additionally, high expression of SIRT3 was related to a poor tumour regression grade in rectal cancer patients treated with neoadjuvant radiotherapy. These findings suggest that restoring mitochondrial function could be an effective method for increasing the radiosensitivity of patients with colorectal cancer.

Keywords: DNA damage repair; SIRT3; cancer cells; mitochondrial dysfunction; radiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Colorectal Neoplasms* / radiotherapy
  • Humans
  • Mitochondria / metabolism
  • Mitophagy
  • Sirtuin 3* / genetics
  • Sirtuin 3* / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Sirtuin 3
  • Ubiquitin-Protein Ligases
  • SIRT3 protein, human