Insular and Striatal Correlates of Uncertain Risky Reward Pursuit in Schizophrenia

Schizophr Bull. 2023 May 3;49(3):726-737. doi: 10.1093/schbul/sbac206.

Abstract

Background and hypothesis: Risk-taking in specific contexts can be beneficial, leading to rewarding outcomes. Schizophrenia is associated with disadvantageous decision-making, as subjects pursue uncertain risky rewards less than controls. However, it is unclear whether this behavior is associated with more risk sensitivity or less reward incentivization. Matching on demographics and intelligence quotient (IQ), we determined whether risk-taking was more associated with brain activation in regions affiliated with risk evaluation or reward processing.

Study design: Subjects (30 schizophrenia/schizoaffective disorder, 30 controls) completed a modified, fMRI Balloon Analogue Risk Task. Brain activation was modeled during decisions to pursue risky rewards and parametrically modeled according to risk level.

Study results: The schizophrenia group exhibited less risky-reward pursuit despite previous adverse outcomes (Average Explosions; F(1,59) = 4.06, P = .048) but the comparable point at which risk-taking was volitionally discontinued (Adjusted Pumps; F(1,59) = 2.65, P = .11). Less activation was found in schizophrenia via whole brain and region of interest (ROI) analyses in the right (F(1,59) = 14.91, P < 0.001) and left (F(1,59) = 16.34, P < 0.001) nucleus accumbens (NAcc) during decisions to pursue rewards relative to riskiness. Risk-taking correlated with IQ in schizophrenia, but not controls. Path analyses of average ROI activation revealed less statistically determined influence of anterior insula upon dorsal anterior cingulate bilaterally (left: χ2 = 12.73, P < .001; right: χ2 = 9.54, P = .002) during risky reward pursuit in schizophrenia.

Conclusions: NAcc activation in schizophrenia varied less according to the relative riskiness of uncertain rewards compared to controls, suggesting aberrations in reward processing. The lack of activation differences in other regions suggests similar risk evaluation. Less insular influence on the anterior cingulate may relate to attenuated salience attribution or inability for risk-related brain region collaboration to sufficiently perceive situational risk.

Keywords: Psychosis; cingulate; decision-making; fMRI; nucleus accumbens; risk-taking; schizoaffective disorder.

MeSH terms

  • Brain
  • Decision Making / physiology
  • Gyrus Cinguli / diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging
  • Nucleus Accumbens / diagnostic imaging
  • Reward
  • Schizophrenia* / diagnostic imaging