SPECT at the speed of PET: a feasibility study of CZT-based whole-body SPECT/CT in the post 177Lu-DOTATATE and 177Lu-PSMA617 setting

Eur J Nucl Med Mol Imaging. 2023 Jul;50(8):2250-2257. doi: 10.1007/s00259-023-06176-6. Epub 2023 Mar 4.

Abstract

Purpose: To evaluate the feasibility of using the StarGuide (General Electric Healthcare, Haifa, Israel), a new generation multi-detector cadmium-zinc-telluride (CZT)-based SPECT/CT, for whole-body imaging in the setting of post-therapy imaging of 177Lu-labeled radiopharmaceuticals.

Methods: Thirty-one patients (34-89 years old; mean ± SD, 65.5 ± 12.1) who were treated with either 177Lu-DOTATATE (n=17) or 177Lu-PSMA617 (n=14) as part of standard of care were scanned post-therapy with the StarGuide; some were also scanned with the standard GE Discovery 670 Pro SPECT/CT. All patients had either 64Cu-DOTATATE or 18F-DCFPyL PET/CT prior to first cycle of therapy for eligibility check. The detection/targeting rate (lesion uptake greater than blood pool uptake) of large lesions meeting RECIST 1.1 size criteria on post-therapy StarGuide SPECT/CT was evaluated and compared to the standard design GE Discovery 670 Pro SPECT/CT (when available) and pre-therapy PET by two nuclear medicine physicians with consensus read.

Results: This retrospective analysis identified a total of 50 post-therapy scans performed with the new imaging protocol from November 2021 to August 2022. The StarGuide system acquired vertex to mid-thighs post-therapy SPECT/CT scans with 4 bed positions, 3 min/bed and a total scan time of 12 min. In comparison, the standard GE Discovery 670 Pro SPECT/CT system typically acquires images in 2 bed positions covering the chest, abdomen, and pelvis with a total scan time of 32 min. The pre-therapy 64Cu-DOTATATE PET takes 20 min with 4 bed positions on GE Discovery MI PET/CT, and 18F-DCFPyL PET takes 8-10 min with 4-5 bed positions on GE Discovery MI PET/CT. This preliminary evaluation showed that the post-therapy scans acquired with faster scanning time using StarGuide system had comparable detection/targeting rate compared to the Discovery 670 Pro SPECT/CT system and detected large lesions defined by RECIST criteria on the pre-therapy PET scans.

Conclusion: Fast acquisition of whole-body post-therapy SPECT/CT is feasible with the new StarGuide system. Short scanning time improves the patients' clinical experience and compliance which may lead to increased adoption of post-therapy SPECT. This opens the possibility to offer imaged-based treatment response assessment and personalized dosimetry to patients referred for targeted radionuclide therapies.

Keywords: 177Lu-DOTATATE; 177Lu-PSMA; PET; Post-therapy; SPECT; Whole body.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Feasibility Studies
  • Humans
  • Middle Aged
  • Octreotide / therapeutic use
  • Organometallic Compounds* / therapeutic use
  • Positron Emission Tomography Computed Tomography* / methods
  • Positron-Emission Tomography / methods
  • Retrospective Studies
  • Tomography, Emission-Computed, Single-Photon / methods

Substances

  • copper dotatate CU-64
  • CdZnTe
  • Octreotide
  • Organometallic Compounds