CoO embedded porous biomass-derived carbon as dual-functional host material for lithium-sulfur batteries

J Colloid Interface Sci. 2023 Jun 15:640:415-422. doi: 10.1016/j.jcis.2023.02.123. Epub 2023 Feb 28.

Abstract

A new strategy is developed to fabricate sulfur electrode by infusing sulfur into a conductive biochar decorated with highly dispersed CoO nanoparticles. The loading of the CoO nanoparticles, as the active sites for reactions, is efficiently increased by using the microwave-assisted diffusion method. It is demonstrated that biochar can serve as an excellent conductive framework to effectively activate sulfur. Simultaneously, the CoO nanoparticles possessing excellent capability to adsorb polysulfides can remarkably alleviate the dissolution of polysulfides, and greatly enhance the conversion kinetics between the polysulfides and Li2S2/Li2S in the charge/discharge processes. The sulfur electrode dual-functionalized with biochar and CoO nanoparticles exhibits excellent electrochemical performance, including high initial discharge specific capacity of 930.5 mAh g-1 and low capacity decay rate of 0.069 % per cycle during 800 cycles at 1C rate. It is particularly interesting that the CoO nanoparticles distinctively enhance the Li+ diffusion during the charge process, endowing the material with excellent high-rate charging performance. This could be beneficial for the development of Li-S batteries with fast charging feature.

Keywords: Biochar; Cathode electrode; CoO nanoparticle; Li-S battery; Microwave-assisted treatment.