Excitation-Wavelength-Dependent Charge-Carrier Lifetime in Hematite: An Insight from Nonadiabatic Molecular Dynamics

J Phys Chem Lett. 2023 Mar 16;14(10):2448-2454. doi: 10.1021/acs.jpclett.3c00052. Epub 2023 Mar 3.

Abstract

Experiments have reported that the photoexcited carrier lifetime in α-Fe2O3 has a significant excitation-wavelength dependence but leave the physical mechanism unresolved. In this work, we rationalize the puzzling excitation-wavelength dependence of the photoexcited carrier dynamics in Fe2O3 by performing nonadiabatic molecular dynamics simulation based on the strongly constrained and appropriately normed functional, which accurately describes the electronic structure of Fe2O3. Photogenerated electrons with lower-energy excitation relax fast in the t2g conduction band within about 100 fs, while the photogenerated electrons with higher-energy excitation undergo first a slower interband relaxation from the eg lower state to the t2g upper state on a time scale of 135 ps, followed by the much faster t2g intraband relaxation. This study provides insight into the experimentally reported excitation-wavelength dependence of the carrier lifetime in Fe2O3 and a reference for regulating photogenerated carrier dynamics in transition-metal oxides through the light excitation wavelength.