In vitro gas production kinetics are influenced by grain processing, flake density, starch retrogradation, and Aspergillus oryzae fermentation extract containing α-amylase activity

J Anim Sci. 2023 Jan 3:101:skad031. doi: 10.1093/jas/skad031.

Abstract

Grain processing such as particle size, flake density, or starch retrogradation can influence ruminal degradability characteristics; however, it is unclear how exogenous α-amylase supplementation interacts with different processed grains. Four experiments were conducted to compare the effects of Aspergillus oryzae fermentation extract (Amaize; Alltech Biotechnology Inc., Nicholasville, KY) supplementation on in vitro gas production kinetics of grain substrates with different processing methods that are common in the feedlot industry. In experiment 1, corn processing (dry-rolled, high-moisture, steam-flaked) and Amaize supplementation (0 or 15 U α-amylase activity/100 mL) were evaluated in a 3 × 2 factorial arrangement of treatments. The rate of gas production for dry-rolled corn was higher (P < 0.001) with Amaize supplementation. In experiment 2, flake density (296, 322, 348, 373, and 399 g/L) and starch retrogradation (storage in heat-sealed foil bags for 3 d at 23 or 55°C) were evaluated in a 5 × 2 factorial arrangement of treatments. There was a flake density × starch retrogradation interaction (P < 0.01) for the rate of gas production because the decrease in the rate of gas production with starch retrogradation was greater at lighter flake densities compared with heavier flake densities. In experiment 3, Amaize supplementation was evaluated across flake densities of nonretrograded steam-flaked corn (stored at 23°C) used in experiment 2. There was a flake density × Amaize interaction (P < 0.01) for the rate of gas production where Amaize supplementation resulted in a lower rate of gas production at lighter flake densities (296, 322, and 348 g/L) but a higher rate of gas production at heavier flake densities (373 and 399 g/L). In experiment 4, Amaize supplementation was evaluated across flake densities of retrograded steam-flaked corn (stored at 55°C) used in experiment 2. Gas production was lower after 24 h with Amaize supplementation for retrograded flakes produced to a density of 322 and 399 g/L while Amaize supplementation did not influence gas production at 24 h at other flake densities. There was a flake density × Amaize interaction for the rate of gas production because Amaize supplementation resulted in a faster (P < 0.01) rate of gas production for all flake densities except retrograded flakes produced to a density of 296 g/L. Enzymatic starch availability was positively correlated with the rate of gas production. These data demonstrate that supplementation of 15 U/100 mL of Amaize resulted in greater rates of gas production for dry-rolled corn, corn steam-flaked to heavier densities, and retrograded steam-flaked corn.

Keywords: exogenous enzyme; finishing cattle; rumen; starch availability; steam-flaked corn.

Plain language summary

Grain processing has been used for decades to improve digestibility of finishing cattle diets, leading to improved growth and feed efficiency. Grain processing methods that result in changes in particle size, flake density, or starch retrogradation have all been shown to affect the degradability characteristics of nutrients in the rumen. Supplementation of feed additives containing exogenous enzyme activity could have the potential to improve digestibility, growth performance, and feed efficiency of livestock. However, it is unknown how supplementation of exogenous α-amylase activity influences degradability characteristics of different processed grains. The objectives of this study were to compare the effects of Aspergillus oryzae fermentation extract supplementation on in vitro gas production kinetics of grain substrates with different processing methods that are common in the feedlot industry. Enzymatic starch availability of steam-flaked corn, but not dry-rolled or high-moisture corn, was reflective of the rate of in vitro gas production. Increasing flake density and increasing starch retrogradation decreased the rate of in vitro gas production. Supplementation of A. oryzae fermentation extract resulted in increased rates of gas production for dry-rolled corn, corn steam-flaked at heavier densities, and retrograded steam-flaked corn.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Aspergillus oryzae* / metabolism
  • Digestion*
  • Edible Grain / metabolism
  • Fermentation
  • Food Handling / methods
  • Plant Extracts
  • Rumen / metabolism
  • Starch / metabolism
  • Steam
  • Zea mays / metabolism
  • alpha-Amylases

Substances

  • Starch
  • Steam
  • alpha-Amylases
  • Plant Extracts