Modulation of WNT, Activin/Nodal and MAPK Signaling Pathways Increases Arterial Hemogenic Endothelium and Hematopoietic Stem/Progenitor Cell Formation During Human iPSC Differentiation

bioRxiv [Preprint]. 2023 Feb 21:2023.02.21.529379. doi: 10.1101/2023.02.21.529379.

Abstract

Several differentiation protocols enable the emergence of hematopoietic stem and progenitor cells (HSPCs) from human induced pluripotent stem cells (iPSCs), yet optimized schemes to promote the development of HSPCs with self-renewal, multilineage differentiation and engraftment potential are lacking. To improve human iPSC differentiation methods, we modulated WNT, Activin/Nodal and MAPK signaling pathways by stage-specific addition of small molecule regulators CHIR99021, SB431542 and LY294002, respectively, and measured the impact on hematoendothelial formation in culture. Manipulation of these pathways provided a synergy sufficient to enhance formation of arterial hemogenic endothelium (HE) relative to control culture conditions. Importantly, this approach significantly increased production of human HSPCs with self-renewal and multilineage differentiation properties, as well as phenotypic and molecular evidence of progressive maturation in culture. Together, these findings provide a stepwise improvement in human iPSC differentiation protocols and offer a framework for manipulating intrinsic cellular cues to enable de novo generation of human HSPCs with functionality in vivo .

Significance statement: The ability to produce functional HSPCs by differentiation of human iPSCs ex vivo holds enormous potential for cellular therapy of human blood disorders. However, obstacles still thwart translation of this approach to the clinic. In keeping with the prevailing arterial-specification model, we demonstrate that concurrent modulation of WNT, Activin/Nodal and MAPK signaling pathways by stage-specific addition of small molecules during human iPSC differentiation provides a synergy sufficient to promote arterialization of HE and production of HSPCs with features of definitive hematopoiesis. This simple differentiation scheme provides a unique tool for disease modeling, in vitro drug screening and eventual cell therapies.

Publication types

  • Preprint