Effects of Low or High Dosages of Dietary Sodium Butyrate on the Growth and Health of the Liver and Intestine of Largemouth Bass, Micropterus salmoides

Aquac Nutr. 2022 Oct 22:2022:6173245. doi: 10.1155/2022/6173245. eCollection 2022.

Abstract

The concentration of butyric acid in the intestine increased with the increase in the content of fermentable dietary fibre; however, the potential physiological impact of a high dose of butyric acid on fish has not been sufficiently studied. The aim of this study was to investigate the effect of two dosages of butyric acid on the growth and health of the liver and intestine of the largemouth bass (Micropterus salmoides). Sodium butyrate (SB) was added to the diet at 0 g/kg (CON), 2 g/kg (SB2), and 20 g/kg (SB20), and the juvenile largemouth bass were fed to apparent satiation for 56 days. No significant difference was observed in the specific growth rate or hepatosomatic index among the groups (P > 0.05). The concentration of β-hydroxybutyric acid in the liver, the activities of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, and the concentrations of triglyceride and total cholesterol in serum increased significantly in the SB20 group compared to the CON group (P < 0.05). The relative expression of fas, acc, il1b, nfkb, and tnfa in the liver of the SB20 groups was also significantly higher than that of the CON group (P < 0.05). The above indicators in the group SB2 had similar change tendencies. The expression of nfkb and il1b in the intestine of both the SB2 and SB20 groups was significantly downregulated compared with that in the CON group (P < 0.05). The size of hepatocytes was enlarged, and the intracellular lipid droplets and the degree of hepatic fibrosis were increased in the SB20 group compared to the CON group. There was no significant difference in intestinal morphology among the groups. The above results indicated that neither 2 g/kg nor 20 g/kg SB had a positive effect on the growth of largemouth bass, while a high dosage of SB induced liver fat accumulation and fibrosis.