Integrated mRNA and miRNA expression analyses for Cryptocaryon irritans resistance in large yellow croaker (Larimichthys crocea)

Fish Shellfish Immunol. 2023 Apr:135:108650. doi: 10.1016/j.fsi.2023.108650. Epub 2023 Feb 28.

Abstract

Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. However, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatened the healthy and sustainable development of L. crocea industry. Recently, a new C. irritans resistance strain of L. crocea (RS) has been bred using genomic selection technology in our laboratory work. However, the molecular mechanisms for C. irritans resistance of RS have not been fully understood. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that are post-transcriptional regulators, and they play vital roles in immune process of bony fish. Identification of anti-C.irritans relevant miRNA signatures could, therefore, be of tremendous translational value. In the present study, integrated mRNA and miRNA expression analysis was used to explore C. irritans resistance mechanisms of the L. crocea. RS as well as a control strain (CS) of L. crocea, were artificially infected with C. irritans for 100 h, and their gill was collected at 0 h (pre-infection), 24 h (initial infection), and 72 h (peak infection) time points. The total RNA from gill tissues was extracted and used for transcriptome sequencing and small RNA sequencing. After sequencing, 23,172 known mRNAs and 289 known miRNAs were identified. The differential expression was analyzed in these mRNAs and mRNAs and the interactions of miRNA-mRNA pairs were constructed. KEGG pathway enrichment analyses showed that these putative target mRNAs of differentially expressed miRNAs (DEMs) were enriched in different immune-related pathways after C. irritans infection in RS and CS. Among them, necroptosis was the immune-related pathway that was only significantly enriched at two infection stages of RS group (RS-24 h/RS-0h and RS-72 h/RS-0h). Further investigation indicates that necroptosis may be activated by DEMs such as miR-133a-3p, miR-142a-3p and miR-135c, this promotes inflammation responses and pathogen elimination. These DEMs were selected as miRNAs that could potentially regulate the C. irritans resistance of L. crocea. Though these inferences need to be further verified, these findings will be helpful for the research of the molecular mechanism of C. irritans resistance of L. crocea and miRNA-assisted molecular breeding of aquatic animals.

Keywords: Cryptocaryon irritans; Disease resistance; Immune response; Larimichthys crocea; miRNAs.

MeSH terms

  • Animals
  • Ciliophora Infections*
  • Ciliophora* / physiology
  • Fish Diseases*
  • Fish Proteins / genetics
  • Hymenostomatida*
  • MicroRNAs* / genetics
  • Perciformes*
  • RNA, Messenger / genetics

Substances

  • RNA, Messenger
  • Fish Proteins
  • MicroRNAs