Cellular senescence: beneficial, harmful, and highly complex

FEBS J. 2023 Mar;290(5):1156-1160. doi: 10.1111/febs.16735.

Abstract

The contribution of cellular senescence to a diverse range of biological processes, including normal physiology, ageing, and pathology were long overlooked but have now taken centre stage. In this Editorial, we will briefly outline the review and original work articles contained in The FEBS Journal's Special Issue on Senescence in Ageing and Disease. It is beginning to be appreciated that senescent cells can exert both beneficial and adverse effects following tissue injury. Additionally, while these cells play critical roles for maintaining a healthy physiology, they also promote ageing and certain pathological conditions (including developmental disorders). Progress has been made in re-defining and identifying senescent cells, especially in slow-proliferating or terminally differentiated tissues, such as the brain and cardiovascular system. Novel approaches and techniques for isolating senescent cells will greatly increase our appreciation for senescent properties in tissues. The inter-organ communication between senescent cells and other residents of the tissue microenvironment, via the senescence-associated secretory phenotype (SASP), is a focus of several reviews in this Special Issue. The importance of the SASP in promoting tumour development and the evolution of SARS CoV-2 variants is also highlighted. In one of the two original articles included in the issue, the impact of dietary macronutrients and the presence of senescent cells in mice is investigated. Lastly, we continue to deepen our understanding on the use of senolytics and senomorphics to specifically target senescent cells or their secreted components, respectively, which is discussed in several of the reviews included here.

Keywords: SASP factors; ageing; senescence; senolytics.

Publication types

  • Editorial

MeSH terms

  • Aging
  • Animals
  • Brain
  • COVID-19*
  • Cell Differentiation
  • Cellular Senescence
  • Mice