Nanotherapeutic potential of antibacterial folic acid-functionalized nanoceria for wound-healing applications

Nanomedicine (Lond). 2023 Jan;18(2):109-123. doi: 10.2217/nnm-2022-0233. Epub 2023 Feb 28.

Abstract

Aim: The functionalization and characterization of antibacterial nanoceria with folic acid (FA) and elucidation of their in vivo wound-healing application. Materials & methods: Functionalization of nanoceria were done with FA using a chemical method and their antibacterial activity, cellular biocompatibility and in vivo wound-healing application were evaluated. Results: The functionalization of nanoceria with FA was done with 10-20 nm size and -20.1 mV zeta potential. The nanoformulation showed a bacteriostatic effect along with biocompatibility to different cell lines; 0.1% w/v spray of FA-nanoceria demonstrated excellent wound-healing capacity within 14 days in a Wister rat model. Conclusion: The antioxidant and reactive oxygen species scavenging activity of the FA-nanoceria make it a promising therapeutic agent as a unique spray formulation in wound-healing applications.

Keywords: ROS; antibacterial; folic acid; nanoceria; wound healing.

Plain language summary

The emergence of chronic wounds is a main reason for mortality in patients with diabetes and other severe pathological complications. Advances in the use of nanotechnology have resulted in beneficial technology for tailoring of pharmacokinetic properties of different drug-delivery vehicles for different biomedical applications. In this study, folic acid (FA) functionalized nanoceria (FA-nanoceria) were formulated and their potential efficacy in the wound-healing process was explored. The nanoformulation showed a remarkable bacteriostatic effect on both Gram-negative and Gram-positive bacteria. In vitro cell line studies showed satisfactory biocompatibility in three different types of cell lines. In addition, a 0.1% w/v spray of FA-nanoceria was applied to full-thickness wounds in an in vivo mice model where it demonstrated excellent wound-healing capacity within 14 days. The combined antioxidant and reactive oxygen species scavenging activity of both the FA and nanoceria makes FA-nanoceria a promising therapeutic agent as a unique spray formulation in wound-healing applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Antioxidants* / chemistry
  • Folic Acid* / chemistry
  • Rats
  • Rats, Wistar

Substances

  • ceric oxide
  • Folic Acid
  • Antioxidants
  • Anti-Bacterial Agents