Path Planning for Unmanned Delivery Robots Based on EWB-GWO Algorithm

Sensors (Basel). 2023 Feb 7;23(4):1867. doi: 10.3390/s23041867.

Abstract

With the rise of robotics within various fields, there has been a significant development in the use of mobile robots. For mobile robots performing unmanned delivery tasks, autonomous robot navigation based on complex environments is particularly important. In this paper, an improved Gray Wolf Optimization (GWO)-based algorithm is proposed to realize the autonomous path planning of mobile robots in complex scenarios. First, the strategy for generating the initial wolf pack of the GWO algorithm is modified by introducing a two-dimensional Tent-Sine coupled chaotic mapping in this paper. This guarantees that the GWO algorithm generates the initial population diversity while improving the randomness between the two-dimensional state variables of the path nodes. Second, by introducing the opposition-based learning method based on the elite strategy, the adaptive nonlinear inertia weight strategy and random wandering law of the Butterfly Optimization Algorithm (BOA), this paper improves the defects of slow convergence speed, low accuracy, and imbalance between global exploration and local mining functions of the GWO algorithm in dealing with high-dimensional complex problems. In this paper, the improved algorithm is named as an EWB-GWO algorithm, where EWB is the abbreviation of three strategies. Finally, this paper enhances the rationalization of the initial population generation of the EWB-GWO algorithm based on the visual-field line detection technique of Bresenham's line algorithm, reduces the number of iterations of the EWB-GWO algorithm, and decreases the time complexity of the algorithm in dealing with the path planning problem. The simulation results show that the EWB-GWO algorithm is very competitive among metaheuristics of the same type. It also achieves optimal path length measures and smoothness metrics in the path planning experiments.

Keywords: BOA algorithm; GWO algorithm; adaptive nonlinear inertia weights; mobile robot; opposition-based learning; path planning; two-dimensional chaotic mapping.