Experimental and Computational Exploration of Chitin, Pectin, and Amylopectin Polymers as Efficient Eco-Friendly Corrosion Inhibitors for Mild Steel in an Acidic Environment: Kinetic, Thermodynamic, and Mechanistic Aspects

Polymers (Basel). 2023 Feb 10;15(4):891. doi: 10.3390/polym15040891.

Abstract

Herein, the inhibition impacts of chitin, pectin, and amylopectin as carbohydrate polymers on the corrosion of mild steel in 0.5 M HCl were researched utilizing various experimental and theoretical tools. The acquired outcomes showed that the inhibition efficiencies (% IEs) of the tested carbohydrate polymers were increased by raising their concentrations and these biopolymers acting as mixed-kind inhibitors with major anodic ones. The acquired % IEs values were reduced with rising temperature. The higher % IEs of the tested polymers were inferred via powerful adsorption of the polymeric molecules on the steel surface and such adsorption obeyed the Langmuir isotherm. The computed thermodynamic and kinetic quantities confirmed the mechanism of physical adsorption. The kinetics and mechanisms of corrosion and its protection by polymeric compounds were illuminated. The results obtained from all the techniques used confirmed that there was good agreement with each other, and that the % of IEs followed the sequence: chitin > amylopectin > pectin.

Keywords: carbohydrate polymers; corrosion; experimental and theoretical studies; inhibitors; mild steel.