A ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles for selective and sensitive detection of Fe3+ and Cu2+ ions

Dalton Trans. 2023 Mar 14;52(11):3300-3307. doi: 10.1039/d3dt00119a.

Abstract

Detection of Fe(III) and Cu(II) in water is highly desirable because their abnormal levels can cause serious harm to human health and environmental safety. In this work, a ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles was constructed for the detection of Fe3+ and Cu2+ ions. The terbium-silica nanoparticles (named SiO2@Tb) with dual-emission signals were successfully prepared by grafting Tb3+ ions onto trimellitic anhydride (TMA) functionalized silica nanospheres. It can serve as a ratiometric fluorescent probe for the detection of Fe3+ and Cu2+ ions in water with the green emission of Tb3+ ions as a response signal and the blue emission of silica nanospheres as the reference signal. Significantly, an easy-to-differentiate color change for visual detection was also realized. SiO2@Tb shows high sensitivity even in very low concentration regions towards the sensing of Fe3+ and Cu2+ with low detection limits of 0.75 μM and 0.91 μM, respectively. Moreover, the mechanism for the luminescence quenching of SiO2@Tb was systematically investigated, and was attributed to the synergetic effect of the absorption competition quenching (ACQ) mechanism and cation exchange. This study demonstrates that SiO2@Tb can be employed as a promising fluorescent probe for the detection of Fe3+ and Cu2+ ions, and the combination of lanthanide ions with silica nanoparticles is an effective strategy to construct a ratiometric fluorescent sensing platform for the determination of analytes in environmental detection.