Tough Porous Silk Nanofiber-Derived Cryogels with Osteogenic and Angiogenic Capacity for Bone Repair

Adv Healthc Mater. 2023 Jul;12(17):e2203050. doi: 10.1002/adhm.202203050. Epub 2023 Mar 4.

Abstract

Tough porous cryogels with angiogenesis and osteogenesis features remain a design challenge for utility in bone regeneration. Here, building off of the recent efforts to generate tough silk nanofiber-derived cryogels with osteogenic activity, deferoxamine (DFO) is loaded in silk nanofiber-derived cryogels to introduce angiogenic capacity. Both the mechanical cues (stiffness) and the sustained release of DFO from the gels are controlled by tuning the concentration of silk nanofibers in the system, achieving a modulus above 400 kPa and slow release of the DFO over 60 days. The modulus of the cryogels and the released DFO induce osteogenic and angiogenic activity, which facilitates bone regeneration in vivo in femur defects in rat, resulting in faster regeneration of vascularized bone tissue. The tunable physical and chemical cues derived from these nanofibrous-microporous structures support the potential for silk cryogels in bone tissue regeneration.

Keywords: angiogenesis; cryogels; osteogenesis; silk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Regeneration
  • Cryogels / chemistry
  • Cryogels / pharmacology
  • Nanofibers*
  • Osteogenesis*
  • Porosity
  • Rats
  • Silk / pharmacology
  • Tissue Scaffolds / chemistry

Substances

  • Cryogels
  • Silk