Optimization of Molecular Methods for Detecting Duckweed-Associated Bacteria

Plants (Basel). 2023 Feb 15;12(4):872. doi: 10.3390/plants12040872.

Abstract

The bacterial colonization dynamics of plants can differ between phylogenetically similar bacterial strains and in the context of complex bacterial communities. Quantitative methods that can resolve closely related bacteria within complex communities can lead to a better understanding of plant-microbe interactions. However, current methods often lack the specificity to differentiate phylogenetically similar bacterial strains. In this study, we describe molecular strategies to study duckweed-associated bacteria. We first systematically optimized a bead-beating protocol to co-isolate nucleic acids simultaneously from duckweed and bacteria. We then developed a generic fingerprinting assay to detect bacteria present in duckweed samples. To detect specific duckweed-bacterium associations, we developed a genomics-based computational pipeline to generate bacterial strain-specific primers. These strain-specific primers differentiated bacterial strains from the same genus and enabled the detection of specific duckweed-bacterium associations present in a community context. Moreover, we used these strain-specific primers to quantify the bacterial colonization of duckweed by normalization to a plant reference gene and revealed differences in colonization levels between strains from the same genus. Lastly, confocal microscopy of inoculated duckweed further supported our PCR results and showed bacterial colonization of the duckweed root-frond interface and root interior. The molecular methods introduced in this work should enable the tracking and quantification of specific plant-microbe associations within plant-microbial communities.

Keywords: Azospirillum brasilense Sp245; Azospirillum brasilense Sp7; RISA; bacterial colonization; bead-beating; duckweed; duckweed-associated bacteria; plant-bacteria associations; plant-microbe interactions; strain-specific primers.