Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery

Pharmaceutics. 2023 Jan 29;15(2):447. doi: 10.3390/pharmaceutics15020447.

Abstract

In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.

Keywords: biopolymers coating; controlled release; endogenous-stimuli; nanomedicine; nanoparticles for drug delivery system; smart nanotechnology.

Publication types

  • Review

Grants and funding

This work was supported by EUROPEAN RESEARCH COUNCIL, ERC-2015-AdG (VERDI), grant No. 694160; Fondo Europeo de Desarrollo Regional (FEDER), CM-React Anticipa-UCM (PR38/21-21); and the Spanish “Ministerio de Ciencia e Innovación” through the project PID2019-106436RB-I00 (Agencia Estatal de Investigación, AEI/10.13039/501100011033).