Metabolites That Confirm Induction and Release of Dormancy Phases in Sweet Cherry Buds

Metabolites. 2023 Feb 3;13(2):231. doi: 10.3390/metabo13020231.

Abstract

Here we report on metabolites found in a targeted profiling of 'Summit' flower buds for nine years, which could be indicators for the timing of endodormancy release (t1) and beginning of ontogenetic development (t1*). Investigated metabolites included chrysin, arabonic acid, pentose acid, sucrose, abscisic acid (ABA), and abscisic acid glucose ester (ABA-GE). Chrysin and water content showed an almost parallel course between leaf fall and t1*. After 'swollen bud', water content raised from ~60 to ~80% at open cluster, while chrysin content decreased and lost its function as an acetylcholinesterase inhibitor. Both parameters can be suitable indicators for t1*. Arabonic acid showed a clear increase after t1*. Pentose acid would be a suitable metabolite to identify t1 and t1*, but would not allow describing the ecodormancy phase, because of its continuously low value during this time. Sucrose reached a maximum during ecodormancy and showed a significant correlation with air temperature, which confirms its cryoprotective role in this phase. The ABA content showed maximum values during endodormancy and decreased during ecodormancy, reaching 50% of its content t1 at t1*. It appears to be the key metabolite to define the ecodormancy phase. The ABA-GE was present at all stages and phases and was much higher than the ABA content and is a readily available storage pool in cherry buds.

Keywords: Prunus avium L.; abscisic acid; abscisic acid glucose ester; arabonic acid; chrysin; cultivar Summit; dormancy phases; pentose acid; sucrose; targeted metabolite profiling.

Grants and funding

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) in the project “Profiling as method to identify relevant metabolites for phenological modelling purposes (PROFILING)” by the grant CH 228/7-1.