Silver Nanoparticles for Fluorescent Nanocomposites by High-Pressure Magnetron Sputtering

Materials (Basel). 2023 Feb 14;16(4):1591. doi: 10.3390/ma16041591.

Abstract

We report on the formation of silver nanoparticles by gas aggregation in a reaction chamber at room temperature. The size distribution of nanoparticles deposited on a silicon substrate for various lengths of an aggregation (high-pressure) chamber was investigated by atomic force microscopy. Nanoparticles were characterized by scanning and transmission electron microscopy and spectral ellipsometry. The physical shape of the nanoparticles and its distribution was correlated with their optical properties. Metal-dielectric nanocomposites were deposited employing simultaneous deposition of Ag NPs via high-pressure magnetron sputtering and the dielectric matrix was deposited via thermal evaporation. Pure and Eu-, Er-, and Yb-doped lithium fluoride was used as the dielectric host matrix. Optical transmittance of lithium fluoride containing silver nanoparticles was measured and their theoretical absorption cross-section calculated. The nanoparticles were also embedded in Eu3+-doped downshifting and Er3+- and Yb3+-doped up-conversion materials to study their influence on emission spectra. Spectra of identical layers with and without nanoparticles were compared. Their transmittance at various annealing temperatures is also presented.

Keywords: Ag nanoparticles; photoluminescence; surface plasmon resonance.