Enhanced Gel Properties of Duck Myofibrillar Protein by Plasma-Activated Water: Through Mild Structure Modifications

Foods. 2023 Feb 18;12(4):877. doi: 10.3390/foods12040877.

Abstract

This study assessed the gel properties and conformational changes of duck myofibrillar protein (DMP) affected by plasma-activated water (PAW) generated at various discharge times (0 s, 10 s, 20 s, 30 s, and 40 s). With the treatment of PAW-20 s, the gel strength and water-holding capacity (WHC) of DMP gels were significantly increased when compared to the control group. Throughout the heating process, dynamic rheology revealed that the PAW-treated DMP had a higher storage modulus than the control. The hydrophobic interactions between protein molecules were significantly improved by PAW, resulting in a more ordered and homogeneous gel microstructure. The increased sulfhydryl and carbonyl content in DMP indicated a higher degree of protein oxidation with PAW treatment. Additionally, the circular dichroism spectroscopy demonstrated that PAW induced α-helix and β-turn transformed to β-sheet in DMP. Surface hydrophobicity, fluorescence spectroscopy, and UV absorption spectroscopy suggested that PAW altered DMP's tertiary structure, although the electrophoretic pattern indicated that the primary structure of DMP was mostly unaffected. These results suggest that PAW can improve the gel properties of DMP through mild alteration in its conformation.

Keywords: gel; oxidation; plasma; protein conformation.