Quantum Control by Few-Cycles Pulses: The Two-Level Problem

Entropy (Basel). 2023 Jan 22;25(2):212. doi: 10.3390/e25020212.

Abstract

We investigate the problem of population transfer in a two-states system driven by an external electromagnetic field featuring a few cycles, until the extreme limit of two or one cycle. Taking the physical constraint of zero-area total field into account, we determine strategies leading to ultrahigh-fidelity population transfer despite the failure of the rotating wave approximation. We specifically implement adiabatic passage based on adiabatic Floquet theory for a number of cycles as low as 2.5 cycles, finding and making the dynamics follow an adiabatic trajectory connecting the initial and targeted states. Nonadiabatic strategies with shaped or chirped pulses, extending the π-pulse regime to two- or single-cycle pulses, are also derived.

Keywords: adiabatic Floquet theory; adiabatic passage; quantum control; quantum system driven by an external field.

Grants and funding

We acknowledge support from the EUR-EIPHI Graduate School (17-EURE-0002) and from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 765075 (LIMQUET).