Evaluation of left ventricular blood flow kinetic energy in patients with hypertension by four-dimensional flow cardiovascular magnetic resonance imaging: a preliminary study

Eur Radiol. 2023 Jul;33(7):4676-4687. doi: 10.1007/s00330-023-09449-8. Epub 2023 Feb 24.

Abstract

Objectives: To evaluate the intra-cavity left ventricular (LV) blood flow kinetic energy (KE) parameters using four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) in patients with hypertension (HTN).

Methods: Forty-two HTN patients and twenty age-/gender-matched healthy controls who underwent CMR including cines, pre-/post-T1 mapping, and whole-heart 4D flow imaging were retrospectively evaluated. HTN patients were further divided into two subgroups: with preserved ejection fraction (HTN-pEF) and with reduced ejection fraction (HTN-rEF). KE parameters were indexed to LV end-diastolic volume (EDV) to obtain averaged LV, minimal, systolic, diastolic, peak E-wave, peak A-wave, E-wave, and A-wave KEiEDV, as well as the proportion of in-plane LV KE (%), the time difference (TD). These parameters were compared between the HTN group and healthy controls, also between two subgroups. The correlation of LV blood flow KE parameters with LV function and extracellular volume fraction (ECV) were analyzed in the HTN group using multivariate regression analysis.

Results: Peak E-wave KEiEDV in the HTN group was significantly lower (p = 0.01), while in-plane KE and TD were significantly higher (all p < 0.01) than those in healthy controls. Compared to the HTN-pEF subgroup, the proportion of in-plane KE and TD was significantly increased in the HTN-rEF subgroup (all p < 0.01). Only the proportion of in-plane KE demonstrated an independent correlation with ECV (β* = 0.59, p < 0.01).

Conclusions: The decreased peak E-wave KEiEDV and the increased proportion of in-plane KE, TD reflected the alterations of LV blood flow in HTN patients, and the proportion of in-plane KE was independently associated with ECV.

Key points: • 4D flow CMR demonstrated that the peak E-wave KEiEDV was decreased, while the in-plane KE and time difference (TD) were increased in hypertensive (HTN) patients. • The proportion of in-plane KE and TD was further increased in HTN patients with reduced ejection fraction than in HTN patients with preserved ejection fraction, and the proportion of in-plane KE was independently associated with extracellular volume fraction in HTN patients. • 4D flow CMR intra-cavity blood flow KE parameters might reveal the LV hemodynamic status in preclinical HTN patients.

Keywords: Hemodynamics; Hypertension; Kinetics; Magnetic resonance imaging.

MeSH terms

  • Humans
  • Hypertension* / complications
  • Hypertension* / diagnostic imaging
  • Magnetic Resonance Imaging / methods
  • Magnetic Resonance Imaging, Cine / methods
  • Magnetic Resonance Spectroscopy
  • Retrospective Studies
  • Stroke Volume / physiology
  • Ventricular Dysfunction, Left*
  • Ventricular Function, Left / physiology