Effect of C-Type Natriuretic Peptide (CNP) on Spermatozoa Maturation in Adult Rat Epididymis

Curr Issues Mol Biol. 2023 Feb 16;45(2):1681-1692. doi: 10.3390/cimb45020108.

Abstract

C-type natriuretic peptide (CNP) is highly expressed in male reproductive tissues, such as the epididymis. The aim of this study is to explore the role of CNP in the maturation of rat epididymal spermatozoa. First, the expression levels of CNP and its specific natriuretic peptide receptor-B (NPR-B) were detected in various tissues of rats and epididymis at different stages after birth. Then a castrated rat model was established to analyze the relationship between testosterone and CNP/NPR-B expression in the epididymis. Finally, CNP and different inhibitors (NPR-B inhibitors, cGMP inhibitors) were used to incubate epididymal sperm in vitro to examine sperm mobility and expression of sperm maturation-related factors. The results showed CNP/NPR-B mRNAs were expressed in all tissues of rats, but were extremely highly expressed in male genital ducts (seminal vesicle, prostate and epididymis). The expression of CNP/NPR-B in epididymis was the highest at birth and the fifth week after birth. In the epididymis, CNP/NPR-B were highly expressed in the caput and located in the epididymal epithelial cells. After castration, the expression of CNP/NPR-B decreased sharply and was restored quickly after testosterone supplementation. In vitro, CNP could significantly promote the acquisition of epididymal sperm motility through the NPR-B/cGMP pathway and induce the expression of sperm maturation-related factors (such as Bin1b, Catsper 1, Dnah17, Fertilin). This study shows that CNP plays a role in epididymal sperm maturation. The mechanism of CNP is to promote the acquisition of epididymal sperm fluidity through the NPR-B/cGMP signaling pathway and also to regulate sperm maturation-related genes. Moreover, the expression of CNP/NPR-B was regulated by testosterone.

Keywords: C-type natriuretic peptide; NPR-B; acquisition of sperm motility; epididymal sperm maturation; testosterone.