High-quality factor mid-infrared absorber based on all-dielectric metasurfaces

Opt Express. 2023 Feb 13;31(4):5747-5756. doi: 10.1364/OE.482987.

Abstract

The absorption spectrum of metasurface absorbers can be manipulated by changing structures. However, narrowband performance absorbers with high quality factors (Q-factor) are hard to achieve, mainly for the ohmic loss of metal resonators. Here, we propose an all-dielectric metasurface absorber with narrow absorption linewidth in the mid-infrared range. Magnetic quadrupole resonance is excited in the stacked Ge-Si3N4 nanoarrays with an absorption of 89.6% and a Q-factor of 6120 at 6.612 µm. The separate lossless Ge resonator and lossy Si3N4 layer realize high electromagnetic field gain and absorption, respectively. And the proposed method successfully reduced the intrinsic loss of the absorber, which reduced the absorption beyond the resonant wavelength and improved the absorption efficiency of Si3N4 in the low loss range. Furthermore, the absorption intensity and wavelength can be modulated by adjusting the geometric parameters of the structure. We believe this research has good application prospects in mid-infrared lasers, thermal emitters, gas feature sensing, and spectral detection.