Hit discovery of novel 2-phenyl-substituted 4-amino-6,7-dihydro-5H-cyclopenta[d]pyrimidines as potential anti-glioblastoma therapeutics: Design, synthesis, biological evaluation, and computational screening

Drug Dev Res. 2023 May;84(3):561-578. doi: 10.1002/ddr.22046. Epub 2023 Feb 23.

Abstract

Glioblastoma multiforme (GBM) is a highly-aggressive, dreadful disease with poor prognosis and disappointing clinical success. There is an unmet medical need of molecularly-targeted therapeutics for GBM treatment. In the present work, a series of novel 2-phenyl-substituted 4-amino-6,7-dihydro-5H-cyclopenta[d]pyrimidines was designed, synthesized, purified, characterized, and evaluated for cytotoxicity against glioblastoma cell line U87-MG. The design process (virtual library enumeration around the core, physicochemical and molecular property prediction/calculation of the designs, filtering the undesirable ones, and the diversity analyses of the lead-like designs), was carefully curated so as to obtain a set of structurally-diverse, novel molecules (total 20), with a particular focus on the relatively unexplored core structure, 6,7-dihydro-5H-cyclopenta[d]pyrimidine. The preliminary screening was done using MTT assay at 10 and 100 μM concentrations of the title compounds F1 -F20 and positive control cisplatin, which yielded six hits (% inhibition at 10 μM: ~50%)-F2 , F3 , F5 , F7 , F15 , and F20 , which were taken up for IC50 determination. The top hits F2 and F7 (IC50 < 10 μM) were further used for computational studies such as target prediction, followed by their molecular docking in the binding sites of the top-3 predicted targets (epidermal growth factor receptor kinase domain, cyclin-dependent kinase 2 [CDK2]) /cyclin E, and anaplastic lymphoma kinase [ALK]). The docking pose analyses revealed interesting trends. The relatively planar core structure, presence of favorable hinge-binding substructures, basic groups, all added up, and culminated in appreciable cytotoxicity against GBM cell line.

Keywords: GBM; cyclopenta[d]pyrimidines; glioblastoma multiforme; molecular docking; physicochemical properties.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Cell Line, Tumor
  • Cell Proliferation
  • Drug Screening Assays, Antitumor
  • Glioblastoma* / drug therapy
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Protein Kinase Inhibitors / pharmacology
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology
  • Structure-Activity Relationship

Substances

  • Pyrimidines
  • Antineoplastic Agents
  • Protein Kinase Inhibitors